Chemical Engineering Thermodynamics

Quiz 2 January 21, 2021
The Diesel Cycle is a model engine to study unmixed fuel/air mixture engines typical for trucks. Diesel engines operate at a much higher compression ratio, about $V_{1} / V_{2}=20$, compared to a gas engine following the premixed (carburated/fuel injected) Otto Cycle. Consider one cylinder of a four-stroke diesel engine with each cylinder having a $V_{\mathrm{TDC}}=V_{1}=583 \mathrm{~cm}^{3}$ (6 cylinders are 3.5L). The stages are:

0-1 Intake Isobaric
1-2 Compression Adiabatic
2-3 Ignition Isobaric
3-4 Power stroke Adiabatic
4-1 Blowdown Isochoric
1-0 Exhaust Isobaric

Four Stroke Otto Cycle (not used)

Four Stroke Diesel Cycle (Used Here)
(Both figures from Wikipedia)

https://web.mit.edu/16.unified/www/FALL/thermodynamics/notes/node26.html

Consider that the material in the cylinder is 2 mole percent isooctane in air with $\boldsymbol{C}_{\mathbf{p}}=\mathbf{3 . 8 9 R}$ for the mixture with a combustion enthalpy for pure octane of $5,470 \mathrm{~kJ} / \mathrm{mole}(109 \mathrm{~kJ} / \mathrm{mole}$ for the mixture).

Assume an ideal gas throughout the calculations.

Ignore the increase in number of moles with combustion.
a) Solve for P_{f} and T_{f} for the 1-2 stroke.
(Fill in your answers in the table for each calculation. The table should be filled out by the end of the quiz. Include a sheet showing your work.)
b) Solve for V_{f} in the 2-3 stroke.
c) Solve for P_{f} and T_{f} for the 3-4 stroke.
d) Calculate W_{EC}, Q, the internal energy changes, ΔU, and enthalpy changes, ΔH, using C_{V} and C_{P} for all of the strokes that are not greyed out in the table. Keep in mind that R is in units of Joules not $\boldsymbol{k J}$. A Joule is equal to MPa cm ${ }^{3}$.
e) Calculate the efficiency of this engine (net work/enthalpy input) if the fuel/air mixture had a combustion enthalpy of $5,470 \mathrm{~kJ} / \mathbf{m o l e} * 0.02=109 \mathrm{~kJ} / \mathbf{m o l e}$ of the mixed gas in the engine (accounting for 2% isooctane in air). Keep in mind that R is in units of Joules not $\boldsymbol{k J}$. A Joule is equal to $\mathrm{MPa} \mathrm{cm}{ }^{3}$.

You can use the attached excel sheet for your answers and calculations. Make sure you write out your calculations on a separate sheet of paper so that I can follow your work. Remember to use 3 significant digits and put units on every number you write down or put in the excel sheet (where possible).

	Intake (Mass Changes)	Compression	Combustion	Expansion (power stroke)	Blowdown (Mass Changes)	Exhaust (Mass Changes)
	isobaric	adibatic, rev	isobaric	adibatic, rev	isochoric	isobaric
Stage	0-1	1-2	2-3	3-4	4-1	1-0
TiK	298	298		2900		298
Tf K	298		2900		298	298
$P \mathrm{imPa}$	0.101	0.101				0.101
$P \mathrm{fmpa}$	0.101				0.101	0.101
$V_{1} \mathrm{~cm} 3$	29.1	583	29.1		583	583
$V \mathrm{fcm} 3$	583	29.1		583	583	29.1
moles i						
moles f						
$W_{\text {EC KJ/mole }}$						
$\Delta \mathrm{H} \mathrm{kJ} / \mathrm{mole}$						
$\Delta \mathrm{UkJ} / \mathrm{mole}$						
Q kJ/mole						

1 atmosphere is $14.7 \mathrm{psi}, 1.01 \mathrm{bar}, 0.101 \mathrm{MPa}, 760 \mathrm{mmHg}, 29.9 \mathrm{inHg}$
Gas Constant, R
$=8.31447 \mathrm{~J} /$ mole $-\mathrm{K}=8.31447 \mathrm{~cm}^{3}-\mathrm{MPa} /$ mole $-\mathrm{K}=8.31447 \mathrm{~m}^{3}-\mathrm{Pa} / \mathrm{mole}-\mathrm{K}$
$=8,314.47 \mathrm{~cm}^{3} \mathrm{kPa} /$ mole $-\mathrm{K}=83.1447 \mathrm{~cm}^{3}-\mathrm{bar} /$ mole $-\mathrm{K}=1.9859 \mathrm{Btu} / \mathrm{lbmole}-\mathrm{R}^{\text {(see note } 1)}$
$=82.057 \mathrm{~cm}^{3}-\mathrm{atm} /$ mole $-\mathrm{K}=1.9872 \mathrm{cal} /$ mole $-\mathrm{K}^{(\text {see note } 2)}=10.731 \mathrm{ft}^{3}-\mathrm{psia} / \mathrm{lbmole}-\mathrm{R}$

Process Type	Work Formula (ig)
Isothermal	$W_{E C}=-\int P d V=-R T \int \frac{d V}{V}=-R T \ln \frac{V_{2}}{V_{1}}$ (ig)
Isobaric	$W_{E C}=-\int P d V=-P\left(V_{2}-V_{1}\right) \quad$ (ig)
Adiabatic and reversible	$\begin{equation*} W_{E C}=-\int P d V=-\int \text { const } \frac{d V}{V^{\left(C_{p} / C_{V}\right)}} \tag{*ig} \end{equation*}$ or $\begin{gather*} \Delta U=C_{V}\left(T_{2}-T_{1}\right)=W_{E C} \tag{*ig}\\ \frac{T_{2}}{T_{1}}=\left(\frac{P_{2}}{P_{1}}\right)^{\left(R / C_{p}\right)}=\left(\frac{V_{1}}{V_{2}}\right)^{\left(R / C_{r}\right)} \tag{*ig} \end{gather*}$

$Q_{\mathrm{rev}}=\Delta U$ for isochoric (constant volume)
$\mathrm{d} U=C_{\mathrm{v}} \mathrm{d} T$ for isochoric (constant volume)

$$
C_{\mathrm{p}}=C_{\mathrm{v}}+R \text { (exact for ideal gas) }
$$

$\Delta H=\Delta U+\Delta(P V)=\Delta U+R(\Delta T)$ (exact for ideal gas)

ANSWERS: Chemical Engineering Thermodynamics
Quiz 2
January 21, 2021

	Intake (Mass Changes)	Compression	Combustion	Expansion (power stroke)	Blowdown (Mass Changes)	Exhaust (Mass Changes)
	isobaric	adibatic, rev	isobaric	adibatic, rev	isochoric	isobaric
Stage	0-1	1-2	2-3	3-4	4-1	1-0
Ti K	298	298	841	2900	1580	298
$T \mathrm{fK}$	298	841	2900	1580	298	298
$P \mathrm{i}$ MPa	0.101	0.101	5.71	5.71	0.532	0.101
$P \mathrm{fMpa}$	0.101	5.71	5.71	0.532	0.101	0.101
$V_{i} \mathrm{~cm} 3$	29.1	583	29.1	100	583	583
$V \mathrm{fcm} 3$	583	29.1	100	583	583	29.1
moles i		0.0238	0.0238	0.0238	0.0238	
moles f	0.0238	0.0238	0.0238	0.0238		
$W_{\text {EC }} \mathrm{kJ} / \mathrm{mole}$		13.0	-17.0	-31.7		
$\Delta \mathrm{H} \mathrm{kJ} / \mathrm{mole}$		17.5	66.6	-42.7		
$\Delta \mathrm{U} \mathrm{kJ} / \mathrm{mole}$		13.0	49.5	-31.7		
Q kJ/mole		0	66.5	0		
		Efficiency				
		0.328				

a) 1-2 Stucle adiabatic

$$
\begin{aligned}
& =5.71 \mathrm{M} / \mathrm{a} \\
& T_{2}=T_{1}\left(\frac{P_{2}}{\rho_{1}}\right)^{R / \rho_{p}}=298 \mathrm{k}\left(\frac{5.7 / \mathrm{M} / a}{8.10 \mathrm{~N} / a}\right)^{2 / 2} \\
& =841 k
\end{aligned}
$$

b) isobaric $2-3$ stack

$$
V_{f}=V_{i}\left(\frac{T_{f}}{T_{i}}\right)=29.1 \mathrm{~cm}^{3}\left(\frac{2900 \mathrm{~K}}{841 \mathrm{k}}\right)=100 \mathrm{~cm}^{3}
$$

c) 3-4 Strale adiabutic

$$
\begin{aligned}
& P_{f}=P_{i}\left(\frac{V_{i}}{V_{f}}\right)^{C_{p} / C_{v}}=5.71 \mathrm{M} / a\left(\frac{100 \mathrm{~cm}^{3}}{5 \varepsilon 3 \mathrm{~cm}^{2}}\right)^{\frac{3.89 \mathrm{R}}{289 \mathrm{R}}} \\
& =0.532 \mathrm{~m} / \mathrm{a}
\end{aligned}
$$

$$
\begin{aligned}
& =1580 \mathrm{~K}
\end{aligned}
$$

d)

$$
\begin{aligned}
& \frac{1-2 \text { sthece } A \text { diohatic }}{Q=0} \\
& \Delta u=w_{B C}=C_{r}\left(T_{f}-T_{i}\right)=2.09\left(8.31 \frac{\mathrm{~J}}{\mathrm{kmb}}\right)(841 \mathrm{k}-2084)(1100 \mathrm{~T} / \mathrm{kJ}) \\
& =13.0 \mathrm{~kJ} / \mathrm{mle} \\
& \Delta H=\Delta u \frac{c_{c}}{c_{v}}=130 \frac{\mathrm{kT}}{\mathrm{mal}}\left(\frac{3.89 \mathrm{~K}}{2 . \varepsilon 9 \mathrm{~h}}\right)=16.0 \mathrm{kT} / \mathrm{mle}
\end{aligned}
$$

2-3 strole irsbaric

$$
\begin{aligned}
& =-17.0 \mathrm{~kJ} / \mathrm{m} / \mathrm{e} \\
& Q=\Delta U-W_{E C} \quad \Delta U=C_{V}\left(T_{f}-T_{i}\right)=2.89(2.31 \mathrm{~T} / \mathrm{mk})\left(2900 \mathrm{k}-c_{4} / \mathrm{k}\right)(1000 \mathrm{~T} / \mathrm{g}) \\
& =66.5 \frac{\mathrm{kT}}{\text { ma }} \quad=49.5 \mathrm{kT} / \mathrm{mel} \\
& \Delta H=\Delta U\left(\frac{4}{c_{v}}\right)=49,5 \frac{\mathrm{kT}}{\mathrm{mbl}}\left(\frac{3.59 \mathrm{ch}}{2.99 \mathrm{~h}}\right)=66.6 \text { kT/wle }
\end{aligned}
$$

$\frac{3-4 \text { stacte }}{Q \equiv 0}$ adiabatic

$$
\begin{aligned}
& Q \equiv 0 \\
& \Delta U=W_{E C}=C_{V}\left(T_{f}-T_{i}\right)=\frac{2 . E 9\left(8.31 \frac{\mathrm{~J}}{26 \mathrm{Ch}}\right)(15 e 0 \mathrm{~h}-2900 \mathrm{C})}{1000 \mathrm{~J} / \mathrm{k} \mathrm{~J}} \\
& =-31.7 \mathrm{kT} / \mathrm{me} \mathrm{C} \\
& \Delta H=\Delta u_{c_{v}}=-31.7 \frac{\mathrm{kT}}{\mathrm{meq}} \frac{3.89 R}{2.891}=-42.7 \frac{\mathrm{LT}}{\mathrm{nde}}
\end{aligned}
$$

e)

$$
\begin{aligned}
& =0.328
\end{aligned}
$$

